
Combination of Electroweak and QCD Radiative Corrections to

Neutral-Current Drell-Yan Processes at Hadron Colliders

DRAFT - only for discussion within CTEQ4LHC WG

I. EW AND QCD CORRECTIONS TO Z PRODUCTION

• Proposal 1:

Inclusion of weak corrections using the effective (sometimes also called improved) Born

approximation (EBA) (see Section IIIB for details). QED radiation included with

PHOTOS (leading multiple photon radiation) or ZGRAD2 (complete 1-loop).

Use of α(Gµ) input scheme, effective vector and axial vector couplings from ZGRAD2

or use measured values for sin2 θeff and Z width.

• Proposal 2:

MC@NLO and PHOTOS

or

MC@NLO and HORACE (see also Les Houches report)

or

ResBos and QED corrections (see also Les Houches report)

See Ref. [1] for a discussion of the numerical differences.

The consensus seems to be that for 1% (and better) precision one needs to do better.

• Proposal 3:

Implementation of complete EW 1-loop corrections in FEWZ or of NLO (and maybe

also NNLO) QCD corrections in ZGRAD2.

1



This will be discussed in the context of the CTEQ4LHC workshop. Moreover: Inclu-

sion of 2-loop EW Sudakov logs and multiple final-state photon radiation.

II. ELECTROWEAK INPUT SCHEMES

In electroweak (EW) calculations one has the choice between different EW input schemes.

The input scheme determines which EW parameters are input parameters and which ones

are calculated. The different options may agree at the strict one-loop level, but differ in the

treatment of higher-order (ie beyond 1-loop) contributions. Thus, in EW 1-loop calculations

usually the option is used that provides an improvement by including some of the two-loop

(and higher order) terms.

The different EW input schemes that are discussed by most EW authors are (see also

discussion in the TeV4LHC report and in Ref. [2]):

• α(0) scheme:

The fine structure constant α(0) is used in all parts of the calculation, i.e. in the Born

cross sections and EW 1-loop corrections. EW input parameters are:

α(0), MW , MZ , MH , mf

This scheme is mostly used in comparisons of different EW calculations to simplify

the setup. It is not recommended for use in EW 1-loop calculations, since the cross

sections will depend on light quark masses.

• α(MZ) scheme:

α(MZ) is used only in the calculation of the Born matrix element when used in EW

1-loop calculations. EW 1-loop corrections are still evaluated at O(α(0)) so that the

correct energy scale for photon radiation is used. One could use α(MZ) also in the

1-loop part, then some factorized parts of two-loop terms and higher are introduced.

Set of EW input parameters:
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α(MZ), MW , MZ , MH , mf

Here the running of QED α is taken into account, ie the photon selfenergy contribu-

tion. The advantage is that the light quark-mass dependence cancels in EW 1-loop

calculations.

• α(Gµ) scheme (prefered scheme in EW 1-loop calculations):

α(Gµ) is used only in the calculation of the Born matrix element EW 1-loop corrections

are still evaluated at O(α(0)) so that the correct energy scale for photon radiation is

used. In leading-order calculations α(Gµ) is calculated as follows:

α(Gµ) =

√
2

π
GµM

2
W sin2 θw

and in EW 1-loop calculations one uses:

α(Gµ) =

√
2

π
GµM

2
W sin2 θw(1 − ∆r)

Here the corrections to the muon decay are included as described by ∆r.∆r is known

beyond one-loop. Set of EW input parameters:

α(Gµ), MW , MZ , mf

and MH is calculated from ∆r(MW , MH , ...). Alternatively one can use:

α(Gµ), MH , MZ , mf

and MW is calculated from ∆r(MW , MH , ...). Again the running of QED α is taken into

account as part of the ∆r contribution, and the light quark-mass dependence cancels

in EW 1-loop calculations. This is the prefered scheme for EW 1-loop calculations and

is the default scheme in ZGRAD2 (see also description in Section IIIC).

Note that in all schemes described above one uses cw = MW /MZ .
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Another important issue is the treatment of the Z resonance. One can either use an

s-dependent or constant width approach (see discussion below). Also, the width should be

calculated at the same order as the matrix element. Another option is to use the measured

Z width.

III. ELECTROWEAK RADIATIVE CORRECTIONS TO NEUTRAL CURRENT

DRELL-YAN PROCESSES

Taken from Ref. [3]. The parton-level differential Born cross section to charged lepton

pair production via photon and Z boson exchange in quark-antiquark annihilation (l = e, µ)

q(p) + q̄(p̄) → γ, Z → l+(k+) + l−(k−)

can be written as follows

dσ̂(0) = dP2f
1

12

∑

|A0
γ + A0

Z|2(ŝ, t, u) , (1)

where
∑

denotes the summation over the spin and color degrees of freedom of the initial and

final state fermions and dP2f is the two-particle phase space element. The factor 1/12 results

from averaging over the quark degrees of freedom. The matrix elements A0
γ and A0

Z describe

the photon and Z boson exchange processes, respectively, at lowest order in perturbation

theory. In terms of the kinematical variables of the parton system

ŝ = (p + p̄)2, t = (p − k+)2, u = (p − k−)2 (2)

the Born matrix elements squared for massless external fermions read

∑

|A0
γ|2 = 8 Q2

q Q2
l (4πα)2 (t2 + u2)

ŝ2

∑

|A0
Z|2 = 8

|χ(ŝ)|2
ŝ2

[(v2
q + a2

q)(v
2
l + a2

l )(t
2 + u2) − 4vqaqvlal (t

2 − u2)]

∑

2Re(A0
ZA0∗

γ ) = 16 Qq Ql aq al (4πα) [vqvl(t
2 + u2) − aqal(t

2 − u2)]
Reχ(ŝ)

ŝ2
(3)

with vf and af parametrizing the Zff̄ (f = l, q) couplings
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vf =
1

2swcw

(I3
f − 2s2

wQf), af =
I3
f

2swcw

. (4)

Qf and I3
f denote the charge and third component of the isospin quantum numbers of the

fermion, respectively, and sw ≡ sin θw, cw ≡ cos θw with θw being the electroweak mixing

angle. α ≡ α(0) is the electromagnetic fine structure constant. Owing to the instability of

the Z boson, the pole in the Z boson propagator is regularized by assuming a complex Z

boson mass Mc

χ(ŝ) = 4πα
ŝ

(ŝ − M2
c )

. (5)

In a perturbative calculation of the Z propagator, a Dyson resummation of one-particle-

irreduzible (1PI) (renormalized) Z self energies is performed. The imaginary part of M2
c is

related to the Z decay width ΓZ by unitarity and ReM2
c (ŝ = M2

Z) = M2
Z with the physical

Z boson mass MZ , which in the on-shell renormalization scheme [16] is equal to the

renormalized mass. The Dyson resummation introduces the well-known problem of finding

a definition of the mass and decay width of the Z boson and a gauge invariant description

of the scattering amplitude order-by-order in perturbation theory. Mainly two approaches

have been discussed in the literature, the constant-width [7] and s-dependent width [8,9]

approach. As discussed in detail in [9] for a description of the Z resonance at O(α) accuracy

the O(α2) contributions to the imaginary part of M2
c must be taken into account, so that a

consistent expansion in O(α2) yields

ImM2
c (ŝ) = Im

(

Σ̂Z(ŝ)[1 + ReΠ̂Z(M2
Z)] + Σ̂Z

(2)(ŝ) −
(Σ̂γZ(ŝ))2

ŝ + Σ̂γ(ŝ)

)

(6)

with Π̂Z of Eq. 15 and Σ̂Z,γ,γZ of Eqs. B2,B1,B3 denoting the (renormalized) self energy

insertions into the Z and photon propagators. The last term in Eq. 6 takes into account

that the photon and Z boson do not propagate independently beyond leading order in

perturbation theory. The transverse parts of the renormalized one and two-loop corrected

1PI Z self energies are denoted by Σ̂Z and Σ̂Z
(2), respectively. The evaluation of ImM2

c

at ŝ = M2
Z corresponds to a Laurent expansion around the complex pole and leads to a
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description of the Z resonance with a constant Z boson width M2
c = M2

Z − iMZΓ
(0+1)
Z . The

consideration of the s-dependence of the imaginary parts of the 1PI self energies by ImΣ̂(ŝ) =

ŝ/M2
ZImΣ̂(M2

Z) leads to the description with an s-dependent width M2
c = M2

Z−iŝ/MZΓ
(0+1)
Z .

Both descriptions are related by a transformation of the parameters of the Z resonance, MZ ,

ΓZ and the residue of the complex pole, and thus are equivalent [10]. We choose the s-

dependent width approach. The one-loop corrected Z boson decay width, Γ
(0+1)
Z , is discussed

in Appendix A.

The electroweak O(α) corrections to neutral-current Drell-Yan processes naturally de-

compose into QED and weak contributions, i.e. they build gauge invariant subsets, and thus

can be discussed separately. The observable NLO cross section is obtained by convoluting

the parton cross section with the quark distribution functions q(x, Q2) (ŝ = x1x2S)

dσ(S) =
∫ 1

0
dx1dx2 q(x1, Q

2) q̄(x2, Q
2)[dσ̂(0+1)(ŝ, t, u) + dσ̂QED(µ2

QED, ŝ, t, u)] (7)

where dσ̂(0+1) comprises the NLO cross section including weak corrections and dσ̂QED de-

scribes the QED part, i.e. virtual and real photon emission off the quarks and charged

leptons. The PDFs depend on the QCD renormalization and factorization scales which we

choose to be equal, denoted by Q2. The radiation of collinear photons off quarks requires

the factorization of the arising mass singularities into the PDFs which introduces a QED

factorization scale µQED as will be explained in detail in the next section.

A. QED corrections

QED radiative corrections consist of the emission of real and virtual photons off the

quarks and charged leptons. The O(α) QED corrections to qq̄ → γ, Z → l+l− can be fur-

ther divided into gauge invariant subsets corresponding to initial and final-state radiation.

The initial-state QED corrections contain quark-mass singularities, i.e. terms of the form

ln(ŝ/m2
q), which factorize and therefore can be absorbed by a redefinition (renormalization)

of parton distribution functions (PDFs) [11]. This can be done in complete analogy to
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the calculation of QCD radiative corrections. By the redefinition, the mass singularities

disappear from the observable cross sections and the renormalized distribution functions be-

come dependent on the QED factorization scale µQED which is controlled by the well-known

Gribov-Lipatov-Altarelli-Parisi (GLAP) equations [12]. These universal photonic correc-

tions can be taken into account by a straightforward modification [13,14] of the standard

GLAP equations which describe gluonic corrections only. The modification corresponds to

the addition of a term of the order of the electromagnetic fine-structure constant α, resulting

in modified distribution functions qf(x, µ2
QED) for quarks with flavour f . The gluon distri-

bution g(x, µ2
QED) is affected by QED corrections as well, although only indirectly, by terms

of the order of O(ααs). The QED factorization scale should be identified with a typical

scale of the process, i.e. a large transverse momentum or the mass of a produced particle.

The proper treatment of the mass-singular initial-state QED corrections would require

not only the solution of the evolution equations including the QED term, but also to correct

all data that are used to fit the parton distributions for those QED effects. Apart from a

few exceptions, experimental data have not been corrected for photon emission from quarks.

However, one can illustrate the effect of the QED radiative corrections by comparing the

modification of the parton distributions relative to the distribution functions obtained from

the evolution equations without the QED terms, which are used as an input. For instance,

in the context of the LHC workshop [5], taking the input distributions from [15] one found

small, negative corrections at the per-mille level for all values of x and µ2
QED relevant in

the LHC experiments. Only at large x >
∼ 0.5 and large µ2

QED
>
∼ 103 GeV2 do the corrections

reach the magnitude of one per cent. Other input distribution functions lead to differences

of QED corrections at the per-mille level, which are again irrelevant when compared with

the expected experimental precision of structure-function measurements.

The QED part of the complete O(α) corrections implemented in ZGRAD2 is based on

the complete calculation of the QED O(α) radiative corrections to pp(pp̄) → Z, γ → l+l−(l =

e, µ) as carried out in [20]. The external fermions are considered to be massless and their

masses are only kept to regularize the arising collinear singularities, i.e. they only appear in
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terms of the form ln(ŝ/m2
f). The collinear singularities associated with initial-state photon

radiation are factorized into the parton distribution functions as described above. Only

when using MRST2004 QED the QED corrections are taken into account into the GLAP

evolution of the PDFs.

B. Non-QED corrections and the effective Born approximation

The non-QED corrections comprise the remaining non-photonic virtual corrections, i.e.

weak corrections such as: self-energy contributions to the photon and Z propagators, vertex

corrections to the γ/Z-l+l− and γ/Z-qq̄ couplings, and box diagrams with two massive gauge

bosons. Since we consider all external fermions, quarks and leptons, to be massless, there

is no Higgs boson contribution to the box diagrams and vertex corrections. The calculation

of the radiative corrections is performed in the ’t Hooft-Feynman gauge. To regularize

and remove the arising UV divergences we use dimensional regularization in the on-shell

renormalization scheme as described in [16].

In the following we closely follow [19,17], especially for a careful treatment of higher-order

corrections, which is important for a precise description of the Z resonance.

The NLO differential parton cross section of Eq. 7 including weak O(α) and leading

O(α2) corrections is of the following form

dσ̂(0+1) = dP2f
1

12

∑

|A(0+1)
γ + A

(0+1)
Z |2(ŝ, t, u) + dσ̂box(ŝ, t, u) . (8)

dσ̂box describes the contribution of the box diagrams. The matrix elements A
(0+1)
γ,Z comprise

the Born matrix elements, A0
γ,Z , the γ, Z, γZ self energy insertions, including a leading log

resummation of the terms involving the light fermions, and the one-loop vertex corrections.

A
(0+1)
γ,Z can be expressed in terms of effective vector and axial-vector couplings g

(γ,Z),f
V,A , f =

l, q, so that the matrix elements squared for massles external fermions read as follows:

∑

|A(0+1)
γ |2 =

(4πα)2

(1 + ReΠ̂γ(ŝ))2 ŝ2
×

8
[

(|gγ,l
V |2 + |gγ,l

A |2) (|gγ,q
V |2 + |gγ,q

A |2) (t2 + u2)
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− 4Re(gγ,l
V (gγ,l

A )∗)Re(gγ,q
V (gγ,q

A )∗) (t2 − u2)
]

(9)

∑

|A(0+1)
Z |2 =

|χ(ŝ)|2
(1 + ReΠ̂Z(ŝ))2 ŝ2

×

8
[

(|gZ,l
V |2 + |gZ,l

A |2) (|gZ,q
V |2 + |gZ,q

A |2) (t2 + u2)

− 4Re(gZ,l
V (gZ,l

A )∗)Re(gZ,q
V (gZ,q

A )∗) (t2 − u2)
]

(10)

∑

2Re(A
(0+1)
Z A(0+1)∗

γ ) =
(4πα) |χ(ŝ)|2

(1 + ReΠ̂γ(ŝ)) (1 + ReΠ̂Z(ŝ)) ŝ2
16Re

(

χ−1(ŝ) ×
[

(gZ,l
V (gγ,l

V )∗ + gZ,l
A (gγ,l

A )∗)(gZ,q
V (gγ,q

V )∗ + gZ,q
A (gγ,q

A )∗)(t2 + u2)

− (gZ,l
A (gγ,l

V )∗ + gZ,l
V (gγ,l

A )∗)(gZ,q
A (gγ,q

V )∗ + gZ,q
V (gγ,q

A )∗)(t2 − u2)
])

(11)

with

gZ,f
A (ŝ) = af + GZ,f

A (ŝ)

gZ,f
V (ŝ) = vf + F Z,f

V (ŝ) + Qf

Π̂γZ(ŝ)

1 + Π̂γ(ŝ)

gγ,f
A (ŝ) = −Gγ,f

A (ŝ)

gγ,f
V (ŝ) = Qf − F γ,f

V (ŝ) . (12)

F
(γ,Z),f
V , G

(γ,Z),f
A denote the renormalized vector and axial-vector formfactors, which

parametrize the weak corrections to the (γ, Z)f f̄ vertices. Π̂X , X = γ, Z, γZ describe the

renormalized photon, Z and (γ, Z) self energy insertions

Π̂γ(ŝ) =
Σ̂γ(ŝ)

ŝ
(13)

Π̂γZ(ŝ) =
Σ̂γZ(ŝ)

ŝ
(14)

Π̂Z(ŝ) =
1

ŝ − M2
Z

(

Σ̂Z(ŝ) − (Σ̂γZ(ŝ))2

ŝ + Σ̂γ(ŝ)

)

. (15)

The box contribution dσ̂box cannot be absorbed in effective couplings. However, in the Z

resonance region the box diagrams can be neglected and the NLO cross section dσ̂(0+1) of

Eq. 8 is of Born-structure. In Appendix B we describe the inclusion of leading higher-order

(irreduzible) QCD and electroweak corrections connected to the ρ parameter.

Starting from the Born cross section of Eq. 1, an effective Born approximation (EBA)

can be defined, which incorporates several entries from higher-order calculations as follows:
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the effective (running) electromagnetic charge by replacing

α → α

1 − ∆α(ŝ)
, ∆α(ŝ) = −ReΠ̂γ

ferm(ŝ) , (16)

where Π̂γ
ferm denotes the fermion-loop contribution to the photon vacuum polarization; the

Z propagator, together with the overall normalization factor of the neutral-current couplings

in terms of the Fermi constant Gµ by using

χ(ŝ) = 4
√

2GµM
2
W s2

w

ŝ

ŝ − M2
Z + iŝΓZ/MZ

, (17)

containing the Z width as measured from the Z resonance at LEP; and the vertex and self

energy corrections by replacing

vf → veff
f = If

3 − 2Qf sin2 θf
eff , f = l, q , (18)

containing the effective (leptonic) electroweak mixing angle at the Z peak, as measured at

LEP and SLC. Taking ΓZ and sin2 θf
eff from higher-order calculations

sin2 θf
eff =

1

4|Qf |
(

1 − RegZ,f
V (M2

Z)

RegZ,f
A (M2

Z)

)

(19)

with the effective couplings of Eq. 12 and ΓZ ≡ Γ
(0+1)
Z of Appendix A, for instance, yields

a good description of the non-photonic electroweak corrections in the region around the Z

resonance. A description in terms of an effective Born cross section far away from the Z

pole becomes insufficient for two reasons: the effective couplings are not static but grow as

functions of ŝ, and the box graphs are no longer negligible, but increase strongly with the

energy and hence contribute sizeably at high invariant masses of the lepton pair.

C. Numerical discussion

For the numerical evaluation we chose the following set of SM input parameters: (needs

to be updated !)
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Gµ = 1.16639 × 10−5 GeV−2, α = 1/137.0359895, αs ≡ αs(M
2
Z) = 0.119

MZ = 91.1867 GeV, Γ
(0+1)
Z = 2.4932 GeV

me = 0.51099907 keV, mµ = 0.105658389 GeV, mτ = 1.777 GeV

mu = 0.0464 GeV, mc = 1.5 GeV, mt = 174 GeV

md = 0.0465 GeV, ms = 0.15 GeV, mb = 4.7 GeV (20)

The W and Higgs boson masses, MW and MH , are related via loop corrections, which can

be approximated as follows [21]

MW = M0
W − 0.0581 ln

( MH

100GeV

)

− 0.0078 ln2
( MH

100GeV

)

− 0.085
( αs

0.118
− 1

)

− 0.518
(∆α

(5)
had(M

2
Z)

0.028
− 1

)

+ 0.537
(( mt

175GeV

)2 − 1
)

(21)

with M0
W = 80.3805 GeV. For the numerical discussion we choose MH = 120 GeV. We

work in the s-dependent width scheme and fix the weak mixing angle by cw = MW /MZ ,

s2
w = 1 − c2

w. The Z-boson decay width given above is calculated including electroweak and

QCD corrections as described in Appendix A. The NLO prediction for the Z boson width

is used throughout, i.e. also in the calculation of the lowest-order and EBA predictions.

The fermion masses only enter through loop contributions to the vector boson self energies

and as regulators of the collinear singularities which arise in the calculation of the QED

contribution. The light quark masses are chosen in such a way, that the value for the

hadronic five-flavour contribution to the photon vacuum polarization, ∆α
(5)
had(M

2
Z) = 0.028

[18], is recovered, which is derived from low-energy e+e− data with the help of dispersion

relations. For this set of input parameters we obtain for the effective leptonic weak mixing

angle of Eq. 19 sin2 θl
eff = 0.23167.
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APPENDIX A: THE Z DECAY WIDTH

The total Z decay width ΓZ is obtained from the sum over the partial decay widths into

fermion pairs as follows

ΓZ =
∑

f 6=t

Γff̄ . (A1)

At lowest order in perturbation theory the partial decay widths read

Γ
(0)

ff̄
= NC

f Γ0

√

1 − 4µf

[

(1 + 2 µf) v2
f + (1 − 4 µf) a2

f

]

(A2)

with the color factor NC
f = 1, 3, f = l, q and

Γ0 =
α MZ

3
and µf =

m2
f

M2
Z

. (A3)

The fermionic partial decay widths including electroweak and QCD radiative corrections can

be expressed in terms of the effective coupling constants gZ,V
f , gZ,A

f and the Z wave function

renormalization contribution Π̂Z of Eq. 12 and 15, respectively, as follows:

Γ
(0+1)

ff̄
= NC

f Γ0

√
1 − 4µf

1 + ReΠ̂Z(M2
Z)

[

(1 + 2 µf) |gZ,f
V (M2

Z)|2 + (1 − 4 µf) |gZ,f
A (M2

Z)|2
]

× (1 + δf
QED) (1 +

Nf
C − 1

2
δQCD) (A4)

The photonic QED corrections

δf
QED =

3 α Q2
f

4 π
(A5)

are very small, i.e. maximal 0.17% of the lowest-order decay width for charged leptons. The

QCD corrections for massless hadronic final states have been calculated in [22,23] and can

be parametrized as follows (αs ≡ αs(M
2
Z))

δQCD =
(

αs

π

)

+ 1.405
(

αs

π

)2

− 12.8
(

αs

π

)3

− Q2
f

4

α αs

π2
. (A6)

The term O(α αs) is also added although it is not a pure QCD contribution.

For b quarks the QCD corrections are different due to finite b mass terms and top-quark

dependent 2-loop diagrams for the axial part. The calculation of the electroweak corrections
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to the Z decay widths assuming massless external fermions is also not a good approximations

for the decay into τ lepton pairs. In order to take into account these effects we correct our

results for the partial decay widths into b quarks and τ leptons as follows:

Γ
(0+1)

bb̄
= Γ

(0+1)

bb̄
(µb = 0) − 0.0088 GeV , Γ(0+1)

ττ = Γ(0+1)
ττ (µτ = 0) − 0.00018 GeV , (A7)

which has been obtained by comparing with the complete calculation with massive external

fermions of Ref. [25].

APPENDIX B: RENORMALIZED SELF ENERGIES AND FORM FACTORS

The renormalized self energies Σ̂X(q2), X = γ, Z, γZ of the neutral vector bosons read

Σ̂γ(q2) = Σγ(q2) − q2 Πγ(0) (B1)

Σ̂Z(q2) = ΣZ(q2) −ReΣZ(M2
Z) + (q2 − M2

Z)
[c2

w − s2
w

s2
w

(δM2
Z

M2
Z

− δM2
W

M2
W

− 2
sw

cw

ΣγZ(0)

M2
Z

)

− Πγ(0)
]

(B2)

Σ̂γZ(q2) = ΣγZ(q2) − ΣγZ(0) − q2 cw

sw

[δM2
Z

M2
Z

− δM2
W

M2
W

− 2
sw

cw

ΣγZ(0)

M2
Z

]

(B3)

with Πγ(0) = ∂Σγ/∂q2(q2 = 0) and the mass renormalization constants

δM2
Z = Re

(

ΣZ(M2
Z) − (Σ̂γZ(M2

Z))2

M2
Z + Σ̂γ(M2

Z)

)

, δM2
W = ReΣW (M2

W ) (B4)

where δM2
Z is calculated via iteration. ΣX(q2) (X = γ, Z, γZ, W ) denote the unrenormalized

self energies as the transverse coefficients in the expansion

ΣX
µν(q

2) = −gµνΣ
X(q2) +

qµqν

q2

[

ΣX(q2) − ΣX
L (q2)

]

. (B5)

The qµqν-terms yield only contributions ∝ m2
f in the on-shell amplitudes and hence vanish

in the limit mf → 0. Explicit expressions for the unrenormalized vector boson self energies

ΣX , X = γ, Z, γZ, W and for the renormalized form factors F
(Z,γ),f
V , G

(Z,γ),f
A are provided in

Appendix B and C.1 of Ref. [17], respectively.
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Higher-order (irreducible) corrections connected to the ρ parameter are also taken into

account by performing the replacement

δM2
Z

M2
Z

− δM2
W

M2
W

→ δM2
Z

M2
Z

− δM2
W

M2
W

− ∆ρHO (B6)

in Eqs. B2,B3, where

∆ρHO = 3
Gµm

2
t

8π2
√

2

[ Gµm2
t

8π2
√

2
∆ρ(2)(m2

t /M
2
H) + c1

αs(mt)

π
+ c2

(αs(mt)

π

)2]

. (B7)

The coefficients c1 and c2 describe the first and second-order QCD corrections to the leading

Gµm
2
t contribution to the ρ parameter, calculated in [26] and [27], respectively. Their explicit

expressions can be found in the Electroweak Working Group Report of [19] (Eqs. (83,84)).

αs(m
2
t ) is calculated from αs(M

2
Z) as follows (5 active flavors):

αs(m
2
t ) =

12π

23

1
[

ln
( m2

t

M2
Z

)

+
12π

23αs(M
2
Z)

]

. (B8)

The function ∆ρ(2)(m2
t /M

2
H) describes the leading two-loop electroweak corrections to the ρ

parameter and is explicitly given in [28].
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